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Small differential cross sections, such as those measured at back angles for 70 MeV 
SHe elastic scattering (typically below lo+ mb/sr past 130”), are difficult to calculate 
accurately when they result from considerable cancellation in the partial-wave sum. 
The codes GENOA, GIBELUMP, SNOOPY3, and DWUCK differ by as much as 
24 orders of magnitude on u(0) for an optical-model potential describing @Ni(aHe, 
aHe)eoNi scattering at 71 MeV. This calculation is repeated, with a modified version of 
GIBELUMP, for wide ranges of the parameters affecting numerical accuracy. A study 
of errors in scattering matrix elements and cross sections, as functions of these param- 
eters, reveals that criteria commonly used to determine the matching radius and number 
of partial waves employed in optical-model calculations yield insufficient values in this 
case. 

1. INTRODUCTION 

There is increasing evidence that the well known ambiguities in optical-model 
potentials for complex projectiles may be at least partially resolved through 
analyses including large angle elastic scattering data [l-5], especially at relatively 
high bombarding energies. In particular, S. M. Smith and D. A. Goldberg [l] 
have noted a sensitivity of back-angle deuteron, helion, and alpha-particle elastic 
scattering to real well depth at incident energies above 60 MeV. The characteristic 
feature of such data is a monotonic fall (with increasing angle) beyond the 
diffraction region. Such behavior is illustrated in Fig. 1, which presents 70 MeV 3He 
elastic angular distributions, taken from targets of 5oTi and 51V with the MSU 
Sector-Focused Cyclotron [2]. Similar data have been obtained by C. B. Fulmer 
and J. C. Hafele. They also stress the importance of the small, back-angle cross 
sections for suppressing ambiguities in the 3He optical-model parameters [3]. 

Unfortunately, we find that unusual care is required for the accurate calculation 
of such small cross sections, since they result from a great deal of cancellation 
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FIG. 1. 70 MeV *He elastic scattering data taken from targets of 50Ti, and 51V. 

in the partial-wave sum. The associated loss of significance can lead to difficulties 
of the type indicated by Fig. 2. This is a comparison of GONi(3He, 3He)soNi 
scattering at 71 MeV, as calculated with the optical-model codes GENOA [6], 
GIBELUMP [7], and SNOOPY 3 [8], and the DWBA code, DWUCK [9]. All 
programs used the following potential (including the parameters with which we 
intended to start searches on the data of Fig. 1): 

where 

U, = g (3 - &), for r < R, , 
c 

U,=ZZ’eZ, 
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with V, = 126.5 MeV, r, = 1 .I2 F, aR = 0.837 F, W, = 20.4 MeV, r, = 1.26 F, 
aI = 0.841 F, and rc = 1.3 F [IO]. At forward angles, where the cross sections are 
large, the four codes agree quite well. However, at back angles, the cross sections 
are small, and there are discrepancies of as much as 24 orders of magnitude. 
Similar comparisons for 30 MeV helion and 50 MeV proton elastic scattering 
(with typical parameters) show less dramatic and negligible differences, respectively, 

&++ + 

+ DWUCK 

FIG. 2. Comparison of elastic scattering calculated with four codes from the same potential. 
The reference lines are from a more accurate calculation with a modified version of GIBELUMP, 
which employed the optimum numerical accuracy parameters defined in the text. 

the magnitude of the percentage disagreement being, in general, inversely related 
to the size of the cross section. When the ratio to Rutherford scattering is above 
1O-2, we find little problem, but when it drops below lo-*, the calculation appears 
beyond the scope of many codes. This paper investigates a particular case, which 
falls into the latter category, back-angle scattering in the aforementioned 
71 MeV BONi(SHe, SHe)BONi problem. 
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II. SOURCES OF ERROR IN OPTICAL-MODEL CALCULATIONS 

Neglecting spin-dependent forces, the partial-wave expansion of the elastic 
scattering amplitude may be written [l I]: 

f(k, 0) = f,(k, 0) + & f (2d + l)(& - 1) ezio~Pd(cos 0). 
G=O 

The most obvious source of error is the necessity to truncate the partial-wave sum 
after some 8 = Lax. There is also the aforementioned loss of significance due to 
cancellation in the sum. We may compensate for the loss of significance by 
calculating the individual terms more accurately. The Legendre polynomials 
(PC) are easily evaluated from their well known recurrence relations, and expressions 
for 8 = 0 and 1 [12]. The Coulomb scattering amplitude (f,) is a relatively simple 
function of the zero-order Coulomb phase shift (a,,), which may be obtained along 
with the other at’s by downward recursion from an asymptotic expansion for 
(TV , with G = L chosen large enough for any desired accuracy [13]. The real 
difficulties arise in calculating the scattering matrix elements (S,). The optical-model 
codes accomplish this by matching “internal” and “external” solutions of the 
radial Schroedinger equation at a radius r = R M . The internal solution is generated 
by numerically integrating the Schroedinger equation from the origin to the 
matching radius. The external solution is taken to be a linear combination of 
regular and irregular Coulomb functions. Thus, several potential sources of error 
are immediately evident. 

If R,,, is not chosen large enough to make the effects of the nuclear potential 
negligible, the Coulomb wave function will be a poor representation of the exact 
solution at that radius. Melkanoff, Raynal, and Sawada have derived [14] an 
approximate form of this error in the scattering matrix for the case of a Woods- 
Saxon potential: 

where V, R, and a are the depth, radius, and diffuseness, respectively, of the Woods- 
Saxon well, and E and k are the energy and wave number of the incident particle. 
They also give the following expressions for truncation (+) and round-off (Ed) 
errors in S, , which accumulate during the numerical integration: 

ET K H4 
s ,*” a,4 ‘2 dr 

and 

ER CC H-a 
I RM I)” dr, (5) 

0 
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where H is the step size and $ is the radial wave function. Equations (4) and (5) are 
valid for the fourth-order Cowell[14] (also known as Fox-Goodwin [15]) method, 
which is widely used for integrating second-order differential equations without 
a first-order term, such as the radial Schroedinger equation with a local optical- 
model potential. The order of the integration method refers to the finite number 
of terms retained in a Taylor series which represents the solution locally. The 
neglect of higher-order terms yields the truncation error. The round-off error 
results from the use of a limited number of digits in the calculation. Equations (4) 
and (5) indicate that both of these errors may grow with Rw . Thus, it may be 
possible to select too large, as well as too small, a matching radius. 

The same problem is apparent for integration step size. If H is very small, the 
truncation error will be small, but the round-off error, large, and vice versa. 
Hopefully, some domain of H (and RM) will always exist for which these errors 
in the scattering matrix elements remain suitably bounded. 

The scattering matrix also receives errors from the Coulomb wave functions, 
which may be evaluated by a variety of techniques, each fraught with unique 
difficulties. For relatively small values of the Coulomb parameter ~(=&ZZ’e2/kfi2), 
and large values of p(=kr), the Coulomb functions are commonly calculated with 
recursion relations and asymptotic expansions [16]. Except for a normalization 
factor, the regular Coulomb functions (F{) may be obtained by downward recursion 
from F,,, = 0 and Fp = 6, an arbitrary “small” number. As in the case of 
Coulomb phase shifts, a particular 8 = 2 is chosen, which determines the accuracy 
at lower 8’s. The normalization may be found by requiring the Wronskian of the 
zero-order Coulomb functions to equal 1. One of the required derivatives, F,‘, is 
simply related to F,, and Fl . Unfortunately, the asymptotic series for the zero-order 
irregular function and its derivative are only semiconvergent. If summing until the 
series begin to diverge does not give the desired accuracy, they may be summed at 
a larger radius (9) where the initial convergence is more rapid. The resulting values 
may then be used to start a numerical integration of the Schroedinger equation, 
containing only the Coulomb potential, inward to the matching radius. At this 
point, upward recursion will generate the irregular Coulomb functions (G,) for 
the higher Ps. Upward recursion preserves significance for the irregular functions, 
since they generally grow in magnitude with increasing 8, opposite to the behavior 
of the regular functions. 

We have mentioned the major sources of error in a typical optical-model 
calculation of an elastic scattering amplitude. The errors in the partial-wave 
amplitudes each have associated “numerical accuracy parameters” (e.g., R,), 
which control particular approximations. We seek values of these parameters 
which yield very accurate individual amplitudes, a few significant figures of which 
will survive the extreme cancellation in the partial-wave sum for small cross 
sections. 
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III. ERRORS IN THE SCATTERING MATRIX 

The code GIBELUMP has been modified so that the aforementioned numerical 
accuracy parameters may be specified externally and varied over wide ranges. 
If we simplify matters by always evaluating the asymptotic expansions of the 
Coulomb functions at the matching radius (i.e., setting W = &), we are left 
with four such parameters: L, 2, RM , and H. The first pair is rather easy to set, 
since the associated errors diminish as L and 2 become larger. Therefore, we 
merely need to increase these parameters until the scattering amplitudes remain 
constant to the number of significant figures desired. However, the matching radius 
and integration step size cannot be dealt with in such an elementary manner. As 
we have seen, there are errors coupled to RM and H which have opposite 
dependences on these parameters. Thus, the net error in each partial-wave ampli- 
tude may be a complicated function of the matching radius and integration step 
size. To facilitate selection of RM and H for our 3He elastic scattering calculation, 
we have investigated this function (for several values of /) at matching radii 
between 10 F and 30 F and step sizes from 0.0075 F to 0.2 F. Since these two 
parameters enter a partial-wave amplitude only through S,, it is sufficient to 
consider errors in the scattering matrix alone. Also, since the Coulomb parameter 
is small (7 < 2) for our case, we do not expect these errors to be significantly 
affected by the calculation of Ricatti-Bessel[l7], rather than Coulomb, functions 
(i.e., setting 77 = 0). Thus, we have omitted the Coulomb potential from the computa- 
tions discussed in this section. This enables us to alternatively calculate St’s from 
second-order Born approximation solutions to the coupled integral equations for 
the phase shifts [ 181. Such calculations were performed with the code PWBA2 [ 191. 
The scattering matrix elements in Table I were obtained with PWBA2 and the 
modified GIBELUMP (with H = 0.0125 F, R,,,, = 25.0 F, Y = 100, and L = 101). 
Both codes employed the previously listed 3He-60Ni potential (except for the 
Coulomb term) at an incident 3He energy of 71 MeV. Since PWBA2 and 
GIBELUMP use entirely different methods of arriving at the Sls, the extent to 
which they agree indicates a lower bound on the accuracy of each. As the partial- 
wave number increases, the Born series converges more rapidly (for suitable 
potentials), and it appears that PWBA2 is accurate to 28 decimal places for 
8 2 40. Thus, we may define errors in the scattering matrix elements calculated 
with the modified GIBELUMP (which will be meaningful if larger than about 
lo-* for e 2 40) by 

and 

Re q = 1 Re SCPWBA2 - Re $“BELUMP 1 

Im l e = / Im STWBAz - Im $IBELUMP j. 
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Figure 3 shows the dependence of these errors on matching radius for 
H = 0.015 F and G = 40, 50, and 60. The scattering matrix elements are extremely 
close to unity, and the corresponding errors almost constant, until RM reaches 
the classical impact parameter Rd = t/k (k M 3F-9 for each partial wave. Farther 
out we observe an exponential decrease, as predicted by Eq. (3) for the finite 
matching radius error. The region of minimum observable error extends from 
about 22 F to 25 F, beyond which an exponentially increasing error becomes 
measurable. This confirms our previous speculation that RM can be chosen too 
large. 

R, (F) 

FIG. 3. Dependence of errors in scattering matrix elements on matching radius for a 0.015 
integration step size. 

There appear to be two major sources of error contributing to the E[‘s. One 
dominates at small matching radii and decreases exponentially with RM , eventually 
being overtaken (somewhere outside 20 F) by the other, which increases expo- 
nentially. Since GIBELUMP employs a fourth-order Cowell numerical integration 
algorithm, Eqs. (4) and (5) may be used to interpret the dependence of the scattering 
matrix errors on integration step size (for fixed matching radii). With RM = 15 F, 
Fig. 4 indicates that the E~‘S are independent of step size. Thus, the major source 
of error for RM 2 20 F does not behave like truncation (Eq. (4)) or round-off 
(Eq. (5)). However, its behavior as a function of H (as well as R,+,) is consistent 
with Eq. (3), which describes the error due to finite matching radius. For 
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TABLE I 

Comparison of Scattering Matrix Elements Calculated with the Modified GIBELUMP (Gptical- 
Model Code) and PWBA2 (Second-Order Born Approximation Coder 

Real St Imaginary St 

L GIBELUMP PWBAZ GIBELUMP PWBA2 

20 0.12941772 0.00101740 0.09446676 0.28783675 
21 0.25494459 0.20751226 0.15728529 0.27749207 
22 0.40959841 0.39774516 0.18916798 0.25166682 
23 0.55919313 0.55834389 0.18627662 0.21455524 
24 0.68339913 0.68449549 0.16157908 0.17316819 
25 0.77761587 0.77846355 0.12928026 0.13372584 
30 0.96526366 0.96527341 0.02580755 0.02583216 
35 0.99466337 0.99466340 0.00409806 0.00409809 
40 0.99918378 0.99918378 0.08062544 0.00062538 
45 0.99987590 0.99987590 0.00009436 0.00009432 
50 0.99998123 0.99998123 0.00001416 0.00001414 
55 0.99999717 0.99999717 o.OOOOO212 0.OOOOO211 
60 0.99999958 0.99999958 O.OOOOOO32 o.OOOOoO31 

a The errors in Figs. 4-6 are relative to these PWBA2 results for partial-wave numbers of 40, 
50, and 60. 

10-z 

FIG. 4. Dependence of errors in scattering matrix elements on integration step size for a 
15 F matching radius. 
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FIG. 5. Dependence of errors in scattering matrix elements on integration step size for a 
25 F matching radius. 

RM = 25 F, Fig. 5 reveals scattering matrix errors growing as the fourth power 
of integration step size. This implies that the dominant source of error at large 
matching radii is accumulating truncation in the numerical integration. If, instead, 
the main source were round-off, the characteristic H-2 dependence would be 
observed. Compilation of the modified GIBELUMP in double precision on a 
computer (the MSU Cyclotron Laboratory XDS Sigma-7) with 32-bit words is 
largely responsible for the lack of noticeable round-off error. 

Similar studies have been made for L = 0 and 10 by using St’s from the modified 
GIBELUMP (with RM = 25.0 F and H = 0.0125 F) instead of PWBA2. The 
redefined “errors” in the scattering matrix show the same behavior as functions 
of R, and H for low partial-wave number, as Q,, , es0 , and Q,, in Figs. 3-5. 

IV. ERRORS IN THE DIFFERENTIAL CROSS SECTION 

Thus far we have determined that a matching radius of about 25 F and the 
smallest integration step size consistent with our 2000 step maximum (computer 
memory limited), i.e., H w 0.0125 F, minimize the errors in our partial-wave 
amplitudes. The total error in the full elastic scattering amplitude also contains 
contributions from the aforementioned loss of significance (due to cancellation 
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in the partial-wave sum), and neglect of terms (in Eq. (2)) for e greater than some 
L max . Table I indicates that, much beyond &’ = 60, the scattering matrix elements 
will differ from unity by less than their probable errors. Thus, there are vanishing 
returns from selecting Lm,, above 60. Also, it is found that Coulomb functions 
calculated with the modified GIBELUMP for e = 60, 7 = 1.81733, and p = 75 
(I = 25) remain constant to 12 significant figures, when values greater than the 
previously used 9 = 100 and L = 101 are tried. Note that this does not imply 
an accuracy of anything like one part in a trillion for the FE’s and Ge’s, since the 
radius at which the semiconvergent asymptotic series are summed (9) is also 
important. A comparison of Coulomb functions from the modified GIBELUMP 
(for 7 = 0) with Ricatti-Bessel functions from RBESS2 [20] suggests an accuracy 
more on the order of one part in a million. However, this will clearly not be 
improved by selecting values of B and L larger than 100 and 101, respectively. 
Thus, we will refer to the following set as our “optimum numerical accuracy 
parameters”: RM = 9I? = 25.0 F, H = 0.0125 F, Lm,, = 60, 9 = 100, and 
L = 101. Assuming they yield a sufficiently accurate scattering amplitude at 
71 MeV, for the full (including Coulomb) 3He-60Ni potential, allows us to define 
an “error” in the differential cross section by 

where ~~(0) is calculated by the modified GIBELUMP with the optimum para- 
meters and u,(e), with some test set. A few values of uo(B) are listed in Table II. 

Investigating this error as a function of RM , H, and Lmax , for several scattering 
angles (e) of interest, affords a means of minimizing calculation time, 
by selecting parameters which yield sufficient accuracy, but not greater than 
required. For example, it might be a very inefficient use of computer time to 
calculate cross sections accurate to 6 significant figures, while searching on data 
with 10% experimental errors. In studying c(e), the test parameters were varied 
one at a time, the others remaining fixed at their optimum va1ues.l 

All optical-model codes have limits on the values of the numerical accuracy 
parameters. Most also have internal criteria which choose some of them 
automatically. The codes of Fig. 2 selected matching radii between 10 F and 13 F 
for 71 MeV 3He scattering from the potential defined by Eq. (1). The original 
GIBELUMP sets RM equal to the radius plus seven times the diffuseness of which- 
ever term in the potential gives the largest value. GENOA does the same, but 
uses nine times the diffuseness. If it is not externally specified, SNOOPY3 defines 
the matching radius to be the point at which the ratio of nuclear to Coulomb 
potential is 0.005/k. DWUCK adds the largest radius (of any term in 

1 For matching radii greater than 25 F, H = 0.015 F was used, rather than H = 0.0125 F. 
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TABLE II 

71 MeV *He Elastic Scattering from WNi as Calculated with the ModiCed 
GIBELUMP for the Optical-Model and Optimum Numerical Accuracy 

Parameters Detined in the Text” 

-- 

k,.(deg> ~o.m.(mb/sr) 

10.0 4.942 x 10s 
20.0 9.444 x 1W 
30.0 1.334 x 10’ 
40.0 7.929 x 10-r 
50.0 1,342 x 10-r 
60.0 1.849 x IO-1 
70.0 7.996 x 10-a 
80.0 2.551 x 10W 
90.0 8.972 x 1O-3 

100.0 2.970 x lo--* 
110.0 7.659 x 1O-4 
120.0 2.217 x 1O-4 
130.0 8.363 x 1O-L 
140.0 2.818 x lo-” 
150.0 1.112 x IO-5 
160.0 4.462 x lo+ 
170.0 2.241 x lo-’ 
180.0 2.596 x 1O-5 

@ The errors in Figs. 6-8 have been determined with respect to these cross sections at 90.0, 
150.0, 170.0, and 180.0 degrees. 

the potential) to 9.2 times the largest diffuseness. Figure 6 illustrates that these 
criteria yield matching radii which are too small for the modified GIBELUMP 
to accurately calculate our back-angle cross sections. Also note that the errors are 
growing exponentially beyond 27 F. 

Hodgson has suggested that each unit of p be divided into 10 integration 
steps [21]. This gives a step size of about 0.03 F for the 71 MeV helions. Figure 7 
indicates that this choice corresponds to only 0.1 % errors in a(@, even at the largest 
angles. However, of the four codes we have examined, only SNOOPY3 has the 
capability of selecting H (with a more complicated method than Hodgson’s). 
For the calculation shown in Fig. 2, SNOOPY3 picked H = 0.05 F, the smallest 
value which it allows. The other three codes were given the commonly used 0.1 F 
integration step size, which, alone, would be responsible for up to 10% errors in 
the cross section (Fig. 7). 
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R, (F) 

FIG. 6. Dependence of errors in ~(0) on matching radius, with other accuracy parameters at 
optimum values, e.g., H = 0.0125 F and L,, = 60. 

$ IO’ 

IO0 

lo-’ 

lo-2 

03 .02 .04 .oa .oa JO 

H (F) 

FIG. 7. Dependence of errors in ~$0) on integration step size, with other accuracy parameters 
at optimum values, e.g., RM = 25.0 F and L,., = 60. 



510 DOERING, GALONSKY, AND HINRICHS 

Criteria similar to Hodgson’s for the number of partial waves [21] have been 
widely incorporated into optical-model codes. GENOA, the original GIBELUMP, 
and SNOOPY3 all truncate the partial-wave sum after some condition closely 
related to 1 1 - St / < 10-N is satisfied. For GENOA and the original 
GIBELUMP, N = 4, and for SNOOPY3, N = 3, if not otherwise specified. 
Each of these codes used 33 < L max < 37 for the calculations of Fig. 2. The 
DWBA code, DWUCK, requires the user to input the number of partial waves 
to be included in the sum. For this comparison with the optical-model codes, 
we let Lm, = 35 for DWUCK. However, from Fig. 8 we conclude that enormous 
errors in the small, back-angle cross sections can result from the neglect of partial 
waves above the thirty-fifth. 

L max 

FIG. 8. Dependence of errors in ~(6’) on the number of partial waves included in the sum, 
with other accuracy parameters at optimum values, e.g., RM = 25.0 F and H = 0.0125 F. 

V. CONCLUSION 

The disagreement between codes depicted in Fig. 2 may be greatly diminished 
by the use of improved values for the numerical accuracy parameters. In particular, 
increasing (within limits) the matching radii and numbers of partial waves from 
the values employed in the original GIBELUMP, GENOA, SNOOPY3, and 
DWUCK calculations of Fig. 2 would yield cross sections approaching the angular 
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distribution obtained from the modified GIBELUMP with the optimum numerical 
accuracy parameters. To a lesser extent, decreasing the integration step sizes 
would also help. Figure 9 illustrates, as an example, the effect of using DWUCK 
with RM = 20.0 F, Lmax = 60, and H = 0.05 F, rather than RM = 12.65 F, 
L max = 35, and H = 0.10 F, as in Fig. 2. In both of these figures, the solid lines 
are uO(B), as calculated with the modified GIBELUMP and the optimum numerical 
accuracy parameters (e.g., RM = 25.0 F, Lm,, = 80, and H = 0.0125 F). The 
vastly closer agreement of the GIBELUMP and DWUCK calculations in Fig. 9 

7 GIBELUMP (modified) 

0 20 40 60 80 loo 120 140 

FIG. 9. Elastic scattering calculated with the modified GIBELUMP, for the optimum 
numerical accuracy parameters defined in the text, and with DWUCK, for parameters as 
near these as possible. Compare with Fig. 2. 

than in Fig. 2 provides further evidence that parameters approaching our optimum 
values yield considerably greater numerical accuracy than those commonly used 
in optical-model codes for 3He elastic scattering, especially for the small, back- 
angle cross sections which occur for bombarding energies on the order of 70 MeV. 
Note that the pronounced, back-angle oscillations in the original GIBELUMP, 
GENOA, SNOOPY3, and DWUCK angular distributions of Fig. 2 are replaced 
(except for the “glory peak” [22]) by a smooth fall in the more accurate calculations. 
This behavior bears a strong qualitative resemblance to the data in Fig. 1, and may 
be expected to facilitate the optical-model analyses. 

This investigation has concentrated on a particular example of elastic scattering. 
No attempt has been made to suggest new criteria for the numerical accuracy 
parameters which would be adequate over wide ranges of projectiles, targets, 
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and energies. Each case deserves individual attention. However, we trust that these 
results are indicative of the numerical difficulties associated with using standard 
optical-model codes to calculate small cross sections. 
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